CH 12: Chromosomal Basis of Inheritance

- Mendel’s “hereditary factors” were genes
- Today we know that genes are located on chromosomes
- The location of a particular gene can be seen by tagging isolated chromosomes with a fluorescent dye that highlights the gene

Concept 12.1: Mendelian inheritance has its physical basis in the behavior of chromosomes

- Mitosis and meiosis were first described in the late 1800s
- The chromosome theory of inheritance states:
 - Mendelian genes have specific loci (positions) on chromosomes
 - Chromosomes undergo segregation and independent assortment
 - The behavior of chromosomes during meiosis accounts for Mendel’s laws of segregation and independent assortment

Morgan’s Experimental Evidence: Scientific Inquiry

- Thomas Hunt Morgan and his students began studying the genetics of the fruit fly, Drosophila melanogaster, in 1907
- Fruit flies were a convenient organism for genetic studies
 - They produce many offspring
 - A generation can be bred every two weeks
 - They have only four pairs of chromosomes

Correlating Behavior of a Gene’s Alleles with Behavior of a Chromosome Pair

- In one experiment, Morgan mated male flies with white eyes (mutant) with female flies with red eyes (wild type)
 - The F₁ generation all had red eyes
 - The F₂ generation showed the classical 3:1 red:white ratio, but only males had white eyes
- Morgan concluded that the eye color was related to the sex of the fly (on the X chromosome)
Morgan determined that the white-eyed mutant allele must be located on the X chromosome.

Morgan’s finding supported the chromosome theory of inheritance.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁ Generation</td>
<td>All offspring had red eyes.</td>
</tr>
</tbody>
</table>

Concept 12.2: Sex-linked genes exhibit unique patterns of inheritance

- In humans and some other animals, there is a chromosomal basis of sex determination.
- In humans/mammals: Two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome.
 - Only the ends of the Y chromosome have regions that are homologous with corresponding regions of the X chromosome (homologs?)
 - The SRY gene on the Y chromosome is required for the development of testes.

A gene that is located on either sex chromosome is called a **sex-linked gene**.

- Genes on the Y chromosome are called Y-linked genes; there are few of these.
- Genes on the X chromosome are called X-linked genes.

X chromosomes have genes for many characters unrelated to sex, whereas the Y chromosome mainly encodes genes related to sex determination.

Sex-linked genes - patterns of inheritance

- For a recessive X-linked trait to be expressed:
 - A female needs two copies of the allele (homozygous).
 - A male needs only one copy of the allele (hemizygous).
- X-linked recessive disorders are much more common in males than in females.
Some disorders caused by recessive alleles on the X chromosome in humans
- Color blindness (mostly X-linked)
- Duchenne muscular dystrophy
- Hemophilia

X Inactivation in Female Mammals
- In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development
 - The inactive X condenses into a Barr body
 - If a female is heterozygous for a particular gene located on the X chromosome, she will be a mosaic for that character

Concept 12.3: Linked genes tend to be inherited together because they are located near each other on the same chromosome
- Chromosomes have hundreds or thousands of genes
 - Y: 200 ish genes (~60 mbp)
 - Ch 21: 500 ish genes (~50 mbp)
 - Ch 1: 5000 ish genes (~250 mbp)
- Genes located on the same chromosome that tend to be inherited together are called linked genes

How Linkage Affects Inheritance
- Morgan did experiments with fruit flies that show how linkage affects inheritance of two characters
 - Morgan crossed flies that differed in traits of body color and wing size
 - Morgan found that body color and wing size are usually inherited together in specific combinations (parental phenotypes)
 - He reasoned that since these genes did not assort independently, they were on the same chromosome
Genetic Recombination and Linkage

- However, nonparental phenotypes were also produced
 - Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent

Recombination of Unlinked Genes: Independent Assortment of Chromosomes

- Mendel observed that combinations of traits in some offspring differ from either parent
 - Offspring with a phenotype matching one of the parental phenotypes are called parental types
 - Offspring with nonparental phenotypes (new combinations of traits) are called recombinant types, or recombinants
 - A 50% frequency of recombination is observed for any two genes on different chromosomes

Recombination of Linked Genes: Crossing Over

- Morgan discovered that even when two genes were on the same chromosome, some recombinant phenotypes were observed
 - He proposed that some process must occasionally break the physical connection between genes on the same chromosome
 - That mechanism was the crossing over between homologous chromosomes
Mapping the Distance Between Genes Using Recombination Data: Scientific Inquiry

- Alfred Sturtevant, one of Morgan’s students, constructed a *genetic map*, an ordered list of the genetic loci along a particular chromosome
 - Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency

- Genes that are far apart on the same chromosome can have a recombination frequency near 50%
 - These genes are physically linked, but genetically unlinked, and behave as if found on different chromosomes
- Sturtevant used recombination frequencies to make linkage maps of fruit fly genes
- *Cytogenetic maps* indicate the positions of genes with respect to chromosomal features
Concept 12.4: Alterations of chromosome number or structure cause some genetic disorders

- Large-scale chromosomal alterations in humans and other mammals often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders
- Plants tolerate such genetic changes better than animals do

Abnormal Chromosome Number

- In **nondisjunction**, pairs of homologous chromosomes do not separate normally during meiosis
- As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy

- **Aneuploidy** results from the fertilization of gametes in which nondisjunction occurred
 - Offspring with this condition have an abnormal number of a particular chromosome
 - A **monosomic** zygote has only one copy of a particular chromosome
 - A **trisomic** zygote has three copies of a particular chromosome

- **Polyploidy** is a condition in which an organism has more than two complete sets of chromosomes
 - Triploidy (3n) is three sets of chromosomes
 - Tetraploidy (4n) is four sets of chromosomes
 - Polyploidy is common in plants, but not animals
 - Polyploids are more normal in appearance than aneuploids
Alterations of Chromosome Structure

- Breakage of a chromosome can lead to four types of changes in chromosome structure
 - **Deletion** removes a chromosomal segment
 - **Duplication** repeats a segment
 - **Inversion** reverses orientation of a segment within a chromosome
 - **Translocation** moves a segment from one chromosome to another
- Might be able to be identified by chromosomal banding

A diploid embryo that is homozygous for a large deletion is likely missing a number of essential genes; such a condition is generally lethal
- Duplications and translocations also tend to be harmful
- In inversions, the balance of genes is normal but phenotype may be influenced if the expression of genes is altered

Down Syndrome (Trisomy 21)

- **Down syndrome** is an aneuploid condition that results from three copies of chromosome 21
- It affects about one out of every 700 children born in the United States
- The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained

Human Disorders Due to Chromosomal Alterations

- Alterations of chromosome number and structure are associated with some serious disorders
- Some types of aneuploidy upset the genetic balance less than others, resulting in individuals surviving to birth and beyond
- These surviving individuals have a set of symptoms, or syndrome, characteristic of the type of aneuploidy

Down Syndrome (Trisomy 21)
Aneuploidy of Sex Chromosomes

- Nondisjunction of sex chromosomes produces a variety of aneuploid conditions
 - Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals
 - Females with trisomy X (XXX) have no unusual physical features except being slightly taller than average
 - Monosomy X, called Turner syndrome, produces X0 females, who are sterile
 - It is the only known viable monosomy in humans

Disorders Caused by Structurally Altered Chromosomes

- The syndrome *cri du chat* ("cry of the cat") results from a specific deletion in chromosome 5
 - A child born with this syndrome is mentally retarded and has a catlike cry; individuals usually die in infancy or early childhood
 - Certain cancers, including *chronic myelogenous leukemia* (CML), are caused by translocations of chromosomes

![Diagram of Translocation associated with chronic myelogenous leukemia (CML)](image)

<table>
<thead>
<tr>
<th>Testcross offspring</th>
<th>Expected (e)</th>
<th>Observed (o)</th>
<th>Deviation (o - e)</th>
<th>(o - e)²</th>
<th>(o - e)²/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple stem/short petals (A−B−)</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green stem/short petals (aazB−)</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple stem/long petals (A−bb)</td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green stem/long petals (aazb)</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² = Sum